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THE DESIGN OF SPARSE DIRECT SOLVERS USING OBJECT-ORIENTED 

TECHNIQUES 

FLORIN DOBRIAN*, GARY KUMFERTt, AND ALEX POTHEN* 

Abstract. We describe our experience in designing object-oriented software for sparse direct solvers. 

We discuss Spindle, a library of sparse matrix ordering codes, and 06U0, a package that implements the 

factorization and triangular solution steps of a direct solver. We discuss the goals of our design: managing 

complexity, simplicity of interface, flexibility, extensibility, safety, and efficiency. High performance is ob- 

tained by carefully implementing the computationally intensive kernels and by making several tradeoffs to 

balance the conflicting demands of efficiency and good software design. Some of the missteps that we made 

in the course of this work are also described. 

Key words, minimum-degree ordering algorithms, object-oriented software design, sparse direct meth- 

ods, sparse indefinite problems 

Subject classification. Computer Science 

1. Introduction. We design and implement object-oriented software for solving large, sparse systems 

of linear equations by direct methods. Sparse direct methods solve systems of linear equations by factoring 

the coefficient matrix, employing graph models to control the storage and work required. Sophisticated 

algorithms and data structures are needed to obtain efficient direct solvers. This is an active area of research, 

and new algorithms are being developed continually. Our goals are to create a laboratory for quickly 
prototyping new algorithmic innovations, and to provide efficient software on serial and parallel platforms. 

Object-oriented techniques have been applied to iterative solvers such as those found in Diffpack [10, 22] 
and PETSc [5, 27]. However, the application of object-oriented design to direct methods has not received the 

attention it deserves. Ashcraft and Liu have designed an object-oriented code called SMOOTH to compute 
fill-reducing orderings [3]. Ashcraft et al. have created an object-oriented package of direct and iterative 
solvers called SPOOLES [4, 30]. Both SMOOTH and SPOOLES are written in C; we discuss SPOOLES 

in Sect. 9. George and Liu have implemented object-oriented user interfaces in Fortran90 and C++ for the 

SPARSPAK library, and they have discussed their design goals in [17]. 

We are interested in object-oriented design of direct solvers since we need to perform experiments to 

quickly prototype new algorithms that we design. We are also interested in extending our work to parallel 

and out-of-core computations, and to a variety of computer architectures. While several direct solvers are 

currently available, most of them are designed as "black boxes"—difficult to understand and adapt to new 
situations. We needed a robust and extensible platform to serve as a baseline, and a framework to support 

inclusion of new components as they are developed. 
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FIG. 2.1. A "black box" formulation of a sparse direct solver. 

This project is the result of a balanced approach between sound software design and the "need for 

speed." We achieve the second goal by carefully implementing highly efficient algorithms. Our success here 

can be quantifiably measured by comparison to other implementations, both in terms of quality of the results 

and the amount of resources needed to compute it. Determining how well we achieve the first goal of good 

software design is much more subjective. In this arena, we argue on the grounds of usability, flexibility, and 

extensibility. 

The research presented here tells the story of two separate but inter-related projects, parts of two PhD 

theses. The first project, Spmdfe, is a library of sparse matrix ordering algorithms including a variety of 

fill-reducing orderings. The second project, 0&U0, handles the remaining steps in solving a linear system of 

equations: matrix factorization and triangular solves. During development, ideas developed in one project 

were incorporated into the other when they were found to be suitable. As the projects matured, several design 

methodologies and programming techniques proved themselves useful twice. Currently the two projects have 

converged on most major design issues, though they are still maintained separately. 

We present the work as a whole and concentrate on the commonalities of object-oriented design that 

have proved themselves in both projects. As this is ongoing research, we also present some equally good 

ideas that may not apply to both the ordering and solver codes, or that have not been incorporated into 

both yet. We find this convergence of design strategies somewhat surprising and most beneficial. 

We explain the algorithms we chose and discuss the key features of the implementations. We also 

show the important tradeoffs that were made; often sacrificing more elegant applications of object-oriented 

techniques for very real improvements in efficiency. We include some missteps that were made in the course 

of our research and the lessons learned from the endeavor. Our code is written in C++. 

Background information about direct methods is presented in Sect. 2. We identify the primary goals 

for our implementations in Sect. 3. The actual design of the software is presented in Sect. 4, with special 

emphasis on the ordering code in Sect. 5 and the factorization code in Sect. 6. We present the results of our 

software in Sect. 7. Finally, we discuss the lessons learned in course of our research in Sect. 9. 

2. Background. The direct solution of a sparse symmetric linear system of equations Ax = b can be 

described in three lines, corresponding to the three main computational steps: order, factor and solve, 

(2.1) 

(2.2) 

(2.3) 

Pi = ordert), 

(L,D,P2)= factor^, Pi), 

x = solve(L, D,P2,b). 



Here A is a sparse, symmetric, positive definite or indefinite matrix; L is its lower triangular factor, and D 

is its (block) diagonal factor, satisfying A = LDLT; Px and P2 are permutation matrices; 6 is the known 

right-hand-side vector; and x is an unknown solution vector. We illustrate this three-step "black box" scheme 

in Fig. 2.1. 

Of the three steps, computing the factorization is usually the most time consuming step. For the rest of 

this section, we will discuss the significance of these three computational steps and their interplay. 

2.1. Fill and the Elimination Forest. The first step of the factorization of a symmetric positive 

definite matrix A can be described by the equation 

A = A0 = 
on    ax 

aj     Ai 

1     0T     \f an    0T \ / 1    If 
h    /„-i ) \ 0       Ai J \ 0   /„-i 

By multiplying the factors, we see that lx = (l/an)ai, and Ax = "A~[- anhl^. Hence the first column of 

L (the subdiagonal elements) is obtained by dividing the corresponding elements of A by the first diagonal 

element; and the matrix that remains to be factored, Ait is obtained by subtracting the term anhlj from 

the corresponding submatrix of A. At the end of the first step, we have computed the first column (and 

row) of the factors L and D. The remainder of the factorization can be computed recursively by applying 

this elimination process to the first column of the submatrix that remains to be factored at each step. 

Computing the factors of a symmetric indefinite matrix is a little more involved, since we have to 

consider the elimination of two columns (and rows) at a step if the first diagonal element of the submatrix 

to be factored is zero or small. We do not discuss the details of factoring an indefinite matrix here. 

We observe from the equations above that the factor L has nonzero elements corresponding to all 

subdiagonal nonzero positions in A; in addition, for j > i, if the ith and jth positions of h are nonzero, 

then the (i, j) element of Ai is nonzero even when A has a zero element in that position. These additional 

nonzeros introduced by the factorization are called fill elements. Fill increases both the storage needed for 

the factors and the work required to compute them. 

An example matrix is provided in Fig. 2.2 that shows non-zeros in original positions of A as "x" and 

fill elements as "•". This example incurs two fill elements. As a column j of A is eliminated, multiples of 

the jth column of L are subtracted from those columns k of A, where lkj is nonzero. 

A graph model first introduced by Parter to model symmetric Gaussian elimination is useful in identifying 

where fill takes place. The adjacency graph of the symmetric matrix, G = G(A), has n vertices corresponding 

to the n columns of A labeled 1,2,..., n. An edge (i, j) joins vertices i and j in G if and only if ai4 is nonzero. 

Since by symmetry, a^i is also nonzero, the graph is undirected. It is conventional to not draw the loops 

(i, i) corresponding to the n nonzero diagonal elements a«. 

The example in Fig. 2.2 illustrates the graph model of elimination. A sequence of elimination graphs, 

Gk, represents the fill created in each step of the factorization. The initial elimination graph is the adjacency 

graph of the matrix, G0 - G(A). At each step k, let vk be the vertex corresponding to the fcth column of Lk 

to be eliminated. The elimination graph at the next step, Gk+i, is obtained by adding edges needed to make 

all vertices adjacent to vk pairwise adjacent to each other, and then removing vk and all edges incident on 

vk ■ The inserted edges are fill edges in the elimination graph. This process is repeated until all the vertices 

are eliminated. We denote by F the filled matrix L + LT. The filled graph G(F) (the adjacency graph of 

F) contains all the edges of G(A) together with the filled edges. 
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FIG. 2.2. Examples of factorization and fill. For each step k in the factorization, the nonzero structure of the factor Ly. 

and the associated elimination graph Gjt are shown. 

When a column j updates another column k during the elimination, dependencies are created between 
the columns j and k. An important data structure that captures these dependencies is an elimination tree, or 

more generally an elimination forest. The reader unfamiliar with elimination trees will find a comprehensive 

survey in Liu [24]. The critical detail for our purposes is that elimination forests minimally represent the 

dependencies in the factorization. Each column in the matrix is represented as a node in the forest. The 

parent of a column j is the smallest row index of a subdiagonal nonzero element (the first subdiagonal 

nonzero) in column j. Note that the definition of the elimination forest employs the factor and not the 

original matrix A. In our example, the parent of column three is four, and £4,3 is a fill element. 

An important concept that permits us to perform block operations in the factorization is that of a 

supernode. Supernodes are groups of adjacent vertices that have identical higher numbered neighbors in the 
filled graph G(F). We group vertices into supernodes using the elimination forest; a supernode consists of a 

set of vertices that (1) forms a path in elimination forest, and (2) have the same higher numbered neighbors. 
In our example, the reader can verify that vertices 3 and 4, and vertices 5 and 6 form supernodes. This 

grouping of vertices into supernodes can then be used to define a supernodal elimination forest. In the filled 

matrix F, a supernode corresponds to a group of columns with a nested nonzero structure in the lower 

triangle. 
Although we defined the elimination forest in terms of the factor L, in practice it is computed before 

the factorization. It turns out that efficient algorithms can be designed to compute the elimination forest 
from the given matrix A and an ordering Pi in time almost linear in the number of nonzeros in A. The 
elimination forest is then used in symbolic factorization algorithms to predict where fill occurs in the factor. 

Fill entries can only occur between a node in the elimination forest and its ancestors. 

The elimination forest corresponding to the example in Fig. 2.2 is a single tree shown in Fig. 2.3. It can 



FIG. 2.3. Examples of elimination forests, (a) An elimination forest of the example in Fig. 2.2. (b) The corresponding 

supernodal elimination forest, which is used in supernodal multifrontal factorization. 

be shown that any postordering of the elimination forest leaves the fill unchanged. 

2.2. Factorization. The example in Fig. 2.2 illustrates a right-looking factorization, where updates 

from the current column being eliminated are propagated immediately to the submatrix on the right. In a 

left-looking factorization, the updates are not applied right away; instead, before a column k is eliminated, 

all updates from previous columns of L are applied together to column k of A. Another approach is a 
multifrontal factorization, in which the updates are propagated from a descendant column j to an ancestor 

column k via all intermediate vertices on the elimination tree path from j to k. 

Ö6U0 currently includes a multifrontal factorization code. In the multifrontal method, we view the sparse 

matrix as a collection of submatrices, each of which is dense. Each submatrix is partially factored; the 

factored columns are stored in the factor L, while the updates are propagated to the parent of the submatrix 

in the elimination forest. The multifrontal method and supernodal left-looking algorithms are suited to 

modern RISC architectures since the regular computations in the dense submatrices make better use of 

cache and implicit indexing. 
We provide a high-level description of the multifrontal algorithm here, and the implementation details 

will be presented in Sect. 6. The multifrontal factorization is computed in post-order on the elimination 

forest. The algorithm creates a dense submatrix called a frontal matrix for each supernode. A frontal matrix 

is a symmetric dense matrix with columns and rows corresponding to the groups of columns to be eliminated 
and all the rows in which these columns have nonzeros. The frontal matrix is partially factored corresponding 

to the columns to be eliminated. The remainder of the frontal matrix forms a dense update matrix that will 

be stacked. The factored columns are copied into the sparse factor L. When all the children of a parent 

vertex in the elimination forest have been eliminated, the parent retrieves the update matrices of its children 
from the stack, and adds them into its own frontal matrix. The parent then has been "fully assembled"; it 

can then partially factor its frontal matrix, and propagate an update matrix to its parent in the elimination 

forest. 
We illustrate the multifrontal factorization process in Fig. 2.4. At each step, k, we assemble the frontal 

matrix, Fk, by adding the entries in the kth rows and columns of A and any update matrices, Uk- These 
contributions to Fk vary in size, so special attention must be paid to indices; hence we call this operation 

scatter-add, and denote it by "e". The frontal matrices then factor all columns that are "fully assembled." 

This looks identical to how Lk was generated in Fig. 2.2, except that here, the frontal and update matrices 

are dense, not sparse. After the appropriate columns are factored from Fk, it is split into an update matrix 

Uk and a factored column C/t, which is scatter-added to the sparse factor Lk- 

2.3. Ordering. The order in which the factorization takes place can change the structure of the elim- 

ination forest, and therefore greatly influences the amount of fill produced in the factorization. To control 
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FIG. 2.4. Example of multifrontal factorization. For each step k in the factorization, the frontal matrix Fk is assembled 

from the appropriate column(s) of A and any update matrices from the children of supernode k in the supernodal elimination 
forest. The fully assembled columns are factored; the factor columns Ck are scatter-added to the sparse triangular factor L. 

Corresponding to the remaining columns in the factor matrix, a new update matrix Uk is computed. 

fill, the coefficient matrix is symmetrically permuted by rows and columns in attempts to reduce the stor- 

age(memory) and work(flops) required for factorization. Given the example in Fig. 2.2, the elimination order 

{2,6,1,3,4,5} produces only one fill element, instead of the two shown. This is the minimum amount of fill 

for this example. 
If A is indefinite, the initial permutation may have to be modified during factorization for numerical 

stability. This detail is captured in Equation 2.2 and in Fig. 2.1 by the distinction between the two permu- 
tations, Pi and P2. The first ordering, Pi, reduces fill and the second ordering, P2, is a modification of Pi 

to preserve numerical stability. In general, any modification of Pi increases fill and, hence, the work and 
storage required for factorization. If A is positive definite, Cholesky factorization is numerically stable for 

any symmetric permutation of A. 
Fill reduction is handled before the factorization step by ordering algorithms. Finding the elimination 

order that produces the minimum amount of fill is a well-known NP-complete problem. The heuristics used to 
compute fill-reducing orderings fall mainly into two classes: divide-and-conquer algorithms that recursively 

partition the graph and prevent fill edges joining two vertices in different partitions; and greedy algorithms 

that attempt to control fill in a local manner. 
Spinöfe is a library of symmetric sparse matrix ordering algorithms — including most of the current 

"bottom-up" fill-reducing orderings. Though Sjjind[e has native support for many matrix file formats, it does 

not implement a full matrix class and relies entirely on the graph model. Therefore while we talked about 
eliminating columns for the factorization, it is more natural to discuss eliminating vertices from the graph in 

this context. These greedy approaches choose which vertex to eliminate next based on some approximation 

of the fill its elimination will induce. An upper bound on the fill created by eliminating a vertex of degree 
d is d(d - l)/2; hence in the minimum degree algorithm a vertex whose degree (or some related quantity) is 

minimum is eliminated next. 
Multiple Minimum Degree (MMD) is an enhancement of the minimum degree algorithm that eliminates 

maximal independent sets of vertices at once to keep the cost of updating the graph low. Many more 

enhancements are necessary to obtain a practically efficient implementation. A survey article by George and 



TABLE 2.1 
Some of the algorithms in the Minimum Priority family. 

Abbreviation  Algorithm Name  

MMD Multiple Minimum Degree [23] 

AMD Approximate Minimum Degree [1] 

AMF Approximate Minimum Fill [29] 

MMDF Modified Minimum Deficiency [26] 

MMMD Modified Multiple Minimum Degree [26] 

AMMF Approximate Minimum Mean Local Fill [28] 

AMIND Approximate Minimum Increase in Neighbor Degree [28] 

Liu [16] provides all of the details for MMD. There have been several contributions to the field since this 

survey. A list of algorithms that we implement in our library and references are in Table2.1. 

2.4. Further Information. This "breathless introduction" to sparse direct solvers is intended to help 

the reader to understand the basic computational problems in this area. For readers who desire further 

information, we recommend the following papers: the MMD ordering algorithm, [16]; the AMD ordering 

algorithm, [1]; the multifrontal method, [25]; elimination trees, [24]; and symmetric indefinite solvers, [2]. 

The books [12, 15] were written earlier than these articles, nevertheless they would be helpful too. 

3. Goals. Our design and implementation were guided by several principal goals we wanted to achieve. 

We list them briefly here, and then discuss each one in detail. 

• Managing Complexity 

• Simplicity of Interface 

• Flexibility 

• Extensibility 

• Safety 

• Efficiency 

3.1. Managing Complexity. Writing code for sparse direct solvers is a challenging task because the 

design requires sophisticated data structures and algorithms. To manage such complexity, proper abstrac- 

tions must be used. Some of the earlier solvers were written in Fortran77, which has very limited support for 

abstraction. As a consequence, the computation is expressed in terms of the implementation. For example, 

a sparse matrix is commonly represented as several arrays and the algorithms are a collection of subroutines 

which read from and write to these arrays. Since there is no support for abstract data types in the language, 

these subroutines tend to have long argument lists. Additionally, since Fortran77 lacks dynamic memory 

allocation, all arrays are global, and are reused many times for different purposes. All these characteristics 

make the code extremely difficult to understand. Some of the more recent codes are written in C, but they 

tend to be influenced by the earlier codes in Fortran77. For instance, the collection of subroutines is often 

the same. 

In contrast to earlier codes, we wish to express the computation in terms of the mathematical formulation. 

This means programming in terms of vectors, trees, matrices, and permutations. This is possible in C++ 

because the language supports abstraction through classes, inheritance, and polymorphism. By programming 

at a higher level of abstraction, we are able to implement code faster and to relegate minute details to lower 



layers of the abstraction. 

3.2. Simplicity of Interface. Simplicity is also achieved by good abstraction, but in a different sense. 

Whereas with complexity management we want to build layers of abstraction, here we focus on intuitive 

components with a minimal interface. Recall that the computation is formulated in terms of sparse matrices, 

vectors and permutations and in terms of algorithms like orderings, factorizations and triangular solves. 

Accordingly, we provide abstractions for such entities. The code for a solver that uses our libraries becomes 

then a simple driver that reads the inputs to the algorithms, runs the algorithms, and writes their outputs. 

3.3. Flexibility. The key to achieving flexibility in our codes is decoupling. We distinguish between 

data structures and algorithms, and design separate abstractions for structural entities such as sparse ma- 

trices, permutations and vectors on one hand, and for ordering and factorization algorithms on the other 

hand. One can and should expect to swap in different ordering or factorization objects in the solver in much 
the same way that components in a stereo system can be swapped in and out. In addition, one has the 

possibility of choosing the number of times different components are used. Ordering and factorization are 

performed only once in a series of systems with the same coefficient matrix with different right hand sides 

for example, while the triangular solves must be repeated for every system in the series. A similar situation 

occurs with iterative refinement, where triangular solves must be repeated for a single run of the ordering 

and factorization algorithms. It should also be possible to solve several systems of equations simultaneously, 

and to have them at various stages of their solution process. 

Swapping components happens not only with data structures and algorithms; more generally, we want 

to swap smaller components within a larger one. For instance, factorization is composed of a couple of 

distinct phases (symbolic and numerical). Solvers for positive definite and indefinite problems differ only in 
the numerical part. To switch from a positive definite solver to an indefinite solver, we only have to swap 
the components that perform the numerical factorization. By splitting a factorization algorithm in this way 

we also provide the option of performing only the symbolic work for those who wish to experiment with the 

symbolic factorization algorithms. 
The design challenge here is that flexibility and simplicity are at odds with one another. The simplest 

interface to a solver would be just a black box; one throws a coefficient matrix and a right hand side vector 

in one end and produces the solution out the other end of the black box. While very easy to use, it would not 

be flexible at all. On the other hand, a very flexible implementation can expose too many details, making 

the learning curve steeper for users. In general, we provide multiple entry points to our code and let the 

users decide which one is appropriate for their needs. 

3.4. Extensibility. Whereas flexibility allows us to push different buttons and interchange components, 

extensibility allows us to create new components and alter the effects of certain buttons. This software is 

part of ongoing research and gets regularly tested, evaluated, and extended. 

The best techniques we found for ensuring extensibility in our codes were to enforce decoupling and to 

provide robust interfaces. These practices also encourage code reuse. In the following sections, we will show 
an example of how two types of dense matrices in 06U0, frontal and update, are used in numerical factorization 

and inherit characteristics from a dense matrix. We also present an example of how polymorphism is used 

in the ordering algorithms of Spiwöle. 
Extensibility is not an automatic feature of a program written in an object-oriented language. Rather, 

it is a disciplined choice early in the design. In our implementations, we have very explicit points where the 

code was designed to be extended.   Our intent is to keep the package open to other ordering and factor- 



ization algorithms. We are interested in extending these codes to add functionality to solve new problems 

(unsymmetric factorizations, incomplete factorizations, etc.) and to enable the codes to run efficiently in 

serial, parallel (with widely differing communication latencies), and out-of-core environments. 

3.5. Safety. We are concerned with two major issues concerning safety: protecting the user from mak- 

ing programming mistakes with components from our codes (compile-time errors), and providing meaningful 

error handling when errors are detected at run-time. Earlier we argued that the simplicity of the interface 

enhances the usability of the software, we add here that usability is further enhanced by safety. 
Compile-time safety is heavily dependent on features of the programming language. Any strongly typed 

language can adequately prevent users from putting square pegs in round holes. That is, we can prevent 

users from passing a vector to a matrix argument. 
Run-time errors are more difficult to handle. Structural entities such as sparse matrices and permutations 

are inputs for factorization algorithms. When such an algorithm is run, it should first verify that the inputs 

are valid, and second that the inputs correspond to each other. 
The biggest difficulty about error handling is that while we, the library writers, know very well how 

to detect the error conditions when they occur, we must leave it to the user of the library to determine 

what action should be taken. Error handling is an important and all too often overlooked part of writing 

applications of any significant size. Because we are writing a multi-language based application and provide 

multiple interfaces (Fortran77, C, Matlab, C++) we immediately rejected using C++ exception handling. 

The way in which errors are handled and reported in 06U0 and Spiwö(e differ slightly in the details, 

but the strategies are similar. In both codes, the classes are self-aware, and are responsible for performing 

diagnostics to confirm that they are in a valid state. Instances that are in invalid states are responsible for 

being able to report, upon request, what errors were detected. 

3.6. Efficiency. An efficient piece of software is one that makes judicious use of resources. To achieve 

efficiency, data structures and algorithms must be implemented carefully. Previous direct solver packages 
tend to be highly efficient, using compact data structures and algorithms that are intimately intertwined 

in the code. Decoupling the data structures from the algorithms and requiring them to interact through 

high-level interfaces can add significant computational overhead. Choosing robust and efficient interfaces 

can be quite involved. The compromise between flexibility and efficiency is determined by these interfaces. 

Consider the means by which an algorithmic object accesses the data stored in a structural object: e.g., 
a factorization operating on a sparse matrix. A rigorous object-oriented design requires full encapsulation 

of the matrix, meaning that the factorization algorithm must not be aware of its internal representation. 
In practice, sparse matrix algorithms must take advantage of the storage format as an essential optimiza- 

tion. This is often done in object-oriented libraries like Diffpack and PETSc by "data-structure neutral" 
programming (see [6] and [5] respectively). This is accomplished by providing an abstract base class for 

a matrix or vector, and deriving concrete implementations for each data-layout: compressed sparse row, 

compressed column major, AIJ (row index, column index, value) triples, blocked compressed sparse, etc. 

Then each concrete derived class must implement its own basic linear algebra functions. Given t types of 

matrices and n basic linear algebra subroutines for each, these libraries provide txn virtual functions. 

Our goal is somewhat narrower: provide a solver that is as fast as any other solver written in any other 
language, but is more usable, flexible, and extensible, because we use object-oriented design and advanced 
programming paradigms. Our algorithms are more complicated than a matrix-vector multiply, and providing 

a set of algorithms for each possible representation of the matrix is unreasonable. Even if we designed general 

algorithms that operate on matrices regardless of their layout, we could not make any guarantees about their 



performance. We are more concerned about adding new algorithms, not adding more matrix formats. Our 

codes apply to general, sparse, symmetric matrices that must be laid out in a specific way for efficient 

computations, and we provide tools to convert to this format. Specific formats are needed because we are 

forced to make a tradeoff: weaken the encapsulation to increase the performance. 

In terms of running time, it is also important to realize which components of the code are the most 

expensive and to focus on efficiently implementing them. Usually, a sparse direct solver spends most of the 

time in the factorization step. A triply nested loop performs the bulk of the computation. Although most 

of the time is spent here, the code for the factorization represents just a tiny piece of the whole program. 

The rest of the code does not account for much of the whole time but it is certainly more sophisticated than 

this kernel. We use a layered approach, in which the focus is on software design in the higher layers and on 

efficiency in the lower ones. To get the best speed, we use a C subset or Fortran77 code for kernels such as 

the triply nested loop inside the factorization. 

Finally, we restricted our use of some specific object-oriented features. For example, we avoid operator 

overloading for matrices and vectors because this leads to the creation of several temporary objects and 

unnecessary data movement1. 

4. Design. This section tackles the major issues in designing our solver. We begin by explaining the 

base classes in the inheritance hierarchy in Sect. 4.1. Then in Sect. 4.2, we discuss the specialization and 

composition of our data structure and algorithm classes. We also discuss how we use iterators to get the 

algorithms and data structures to interact in Sect. 4.3. The important problem of I/O and handling multiple 

(often disparate) sparse matrix file formats is discussed in Sect. 4.4. Then we focus on implementation 

details specific to each package. The discussion of Spmflfe details in Sect. 5 highlights extensibility in using 

polymorphic fill reducing ordering algorithms. The corresponding section for 061(0 is Sect. 6. 

4.1. Base Classes. We have organized most of our heavy-weight classes into a single inheritance tree. 

The two main branches are DataStructure and Algorithm. Each matrix, permutation, and graph class 

inherits from DataStructure a common set of state information, interfaces for validating its state, and (op- 

tionally) resources to support persistent objects. Similarly classes that perform computational services such 

as ordering and factorization are derived from the Algorithm class, which provides support for algorithmic 

state information and the interface for running the algorithm. Both DataStructure and Algorithm are 

derived from a common ancestor, the Object class shown in Fig. 4.1. Although this class has no physical 

analogy, it does provide a suite of useful services to all its descendants such as error handling and instance 

counting. Through inheritance from Object, every structural or algorithmic object remembers when the 

most recent error occurred, if any. This error can be retrieved on demand and communicated to other 

classes. 

The DataStructure class shown in Fig. 4.2 implements the validity checking mechanism specific to all 

structural objects. A structural object is usually initialized as invalid. After it is fully initialized, it must 

be validated. Later it can be completely reset. Again, the methods for validation and resetting are pure 

virtual, every structural class being required to implement its own behavior. 

The Algorithm class shown in Fig. 4.3 handles the execution of algorithmic objects. Each algorithmic 

object requires a certain amount of time for its execution. This information can be retrieved for later 

use. The execution of any algorithmic object is triggered by the same interface, only the implementation is 

specific. This requires the method for running algorithmic objects to be pure virtual. 

JThe reader is invited to see Velduizen [31], which explains some solutions to this problem in detail. 
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class Object 

{ 
protected: 

Error error; 

public: 

Object0 {error = None;} 

Error getError(void) const {return error;} 

virtual void print(const char »description) const = 0; 

Vü 
FIG. 4.1. The Object Class. 

class DataStructure: public Object       > 

{ 
protected: 

bool valid; 

public: 

DataStructure() {valid = False;} 

bool isValid(void) const {return valid;} 

virtual void validate(void) = 0; 

virtual void reset(void) = 0; 

VI: 
FIG. 4.2. The DataStructure class. 

There are some distinctions between Spmöfe and 06U0 in their implementations. Both have forms of 

object-persistence through the DataStructure class, though the exact mechanisms differ. Spindle defines a 

wider variety of states for DataStructure classes to be in, and carries a related idea of state for the Algorithm 

classes. In both packages, however, the non-trivial concrete classes are derived from this fundamental 

hierarchy. 

4.2. Algorithms and Data Structures. We have seen several structural classes such as Matrix, 

Vector, Graph and Permutation. Instances of these classes are the inputs and outputs of algorithmic 

objects that order, factor, and perform the triangular solves. 

The ordering algorithms, for example, require only the Graph of a Matrix as input, although there are 

additional options that advanced users could set. After the algorithm is run, the results could be queried. In 

Spmdfe, all the fill-reducing ordering algorithms can produce either a Permutation or an EliminationForest 

(or both) upon successful execution of the algorithm. 

Ordering algorithms can enter an invalid state for several reasons. The input data could have been 

invalid, the user could have attempted to run the algorithm without sufficient input information, a run-time 

error might have been detected, or there might be a problem servicing the user's output request. In all these 

cases, the instance of the ordering algorithm can be reset and reused with different input data. 

Algorithms can also be composed to obtain more sophisticated algorithmic objects. The factorization 

itself is made of several components, each derived from the Algorithm class; we provide details in Sect. 6. 
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class Algorithm:  public Object 

{ 
protected: 

float runTime; 

public: 

Algorithm0 {runTime =0;} 

float getRunTime(void) {return runTime;} 

virtual void run(void) = 0; 

V: 
FIG. 4.3. The Algorithm class. 

bool isAdjacent( const Graphfc g, int i, int j ) const  > 

{ 
for(  int k = g.adjHead[i] ;  k < g.adjHead[i+l] ;   ++k )   { 

if   ( g.adjList[k]   == j  )   { 

return true; 

} 

} 
return false; 

Vl 
FIG. 4.4. A C-like function that directly accesses the data in Graph. 

Having these subcomputations implemented separately is useful for many reasons. We subject each compo- 

nent to unit testing and later combine them during integration testing. It also helps in code reuse, since the 

factorization algorithms for positive definite matrices and indefinite matrices share several steps. 

The derivation and composition of data structures is just as rich. Multifrontal factorization requires sev- 

eral dense matrix types that are derived from a common DenseSymmetricMatrix: these are FrontalMatrix 

and UpdateMatrix. 

4.3. Iterators. Separating data structures from algorithms makes it necessary to create interfaces 

between the modules. Inspired by the Standard Template Library (STL)—which also makes a distinction 

between data structures and algorithms—we explored the paradigm of iterators for this purpose. We first 

define the iterator construct, and then discuss how we used it. In later sections, we show examples where 

the iterator paradigm was applied with much success (Sect. 6) and where they were misapplied and reduced 

performance significantly (Sect. 9.2). 

4.3.1. Definition of an Iterator. An iterator is a class that is closely associated with a particular 

container (data structure) class. The iterator is usually a "friend" class of the container granting it privileged 

access. Its purpose is to abstract away the implementational details of how individual items within the 

container are stored. 

Assume, for example, that the list of all edges in a Graph is in the array ad j List [] and that a second 

array adjHead[] stores the beginning index into adjList[] for each vertex in the graph. Then to check if 

vertex i is adjacent to vertex j we simply run through the arrays as in the piece of code in Fig. 4.4. 

This design has a flaw, in that the function assumes the layout of data in the Graph class and accesses it 
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fhool  isAdjacentC const Graphfc g, int i, int j ) constS 

{ 
for( Graph::adj.iterator it = g.adj.begin(i); 

it != g.adj.end(i); ++it ) { 

if ( *it == j ) { 

return true; 

} 
} 
return false; 

FIG. 4.5. A C+ + global function that uses an iterator to search Graph. 

directly. Consider now a different approach where the Graph class creates an iterator. Conventionally, an it- 

erator class mimics the functionality of a pointer accessing an array. The dereference operator (operator* ()) 

is overloaded to access the current item in the container, and the increment operator (operator++0) ad- 

vances the iterator to the next item in the container. Rewriting our function above, as shown in Fig. 4.5, 

we define Graph: :adj.begin(int) to create an iterator pointing to the beginning of the adjacency list of a 

specified vertex and Graph: :adj_end(int) to return an iterator pointing to the end of the list2. 

The benefit of this second approach is that the function isAdjacent no longer assumes any information 

about how the data inside Graph is laid out. If it is indeed sequential as it was in the previous example, then 

the iterator could be simply a pointer to an integer data type. However, if the adjacency lists are stored in a 

different format, e.g., a red-black tree (for faster insertions and deletions), the iterator approach still applies 

for accessing the adjacency lists, since it assumes a suitable iterator class has been provided. 

4.3.2. Application of Iterators. Iterators provide a kind of "compile-time" polymorphism. They 

allow a level of abstraction between the data structure and the algorithm, but the concrete implementation 

is determined at compile time. This allows the compiler to inline function calls (often through several levels) 

and get very good performance3. 

There were a few difficulties in applying this technique to our problems. The most complicated aspect 

was that all STL containers are one-dimensional constructs. Many of our data structures, such as matrices 

and graphs, are two-dimensional. This was not a serious problem since we, as programmers, tend to linearize 

things anyway. In the example of iterators before, for instance, we used the iterator to iterate over the set 

of vertices adjacent to a particular vertex. 

4.4. Input/Output. An important problem that we often run into is sharing problems with other 

researchers. Whenever we agree to generate some solutions for a client (either academia or industry) we 

often find that we must adapt our code to a new file format. Attempts to standardize sparse matrix file 

formats do exist, most notably the Harwell-Boeing Format [9], and the Matrix Market format [7]. However, 

we found it unreasonable to expect clients to restrict themselves to a small choice of formats. We found, 

in fact, that understanding the nature of this problem and applying object-oriented techniques is a good 

exercise in preparation for the harder problems ahead. 

Perhaps the easiest way to handle sparse matrix I/O is to have a member function of the matrix class 

2Actually, it points to one past the end—a standard C++ convention. 
3C++ cannot inline virtual functions. 
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// Matrix.h ^ 

«include  "MatrixFile.h" 

class Matrix 

{ 
public: 

Matrix( MatrixFile«: ); 

//■•• 

}; 

»include "Matrix.h"     > 

class MatrixFile 

{ 
public: 

MatrixFile( Matrix*: ); 

VÜ 

FIG. 4.6. A first design of the Matrix and Matrixfile classes. 

«include  "MatrixBase.h"     N 

class Matrix 

: public MatrixBase 

{ 
public: 

MatrixC MatrixBase*: ); 

//■•• 

«include "MatrixBase.h" 

class MatrixFile 

:  public MatrixBase 

{ 
public: 

MatrixFile( MatrixBase*: ); 

}; 

FIG. 4.7. The Matrix and Matrixfile classes derived from a MatrixBase class. 

to write a particular format and another to read. This is a simple solution, but it has a scalability problem. 
First, as the number of formats increase, the number of member functions grows and the matrix class becomes 

more and more cumbersome. Second, if separate matrix classes are needed then all of the I/O functions 

must be replicated. 

4.4.1. The Chicken and Egg Problem. One could reasonably create separate Matrix and MatrixFile 

classes. The immediate problem with this design is determining which begets which. One would expect to 

read a matrix from a file, but it also makes sense to generate a matrix and want to save it in a particular 

format as shown in Fig. 4.6. 
Such a design induces a cyclic dependency between the two objects, which is bad because such depen- 

dencies can dramatically affect the cost of maintaining code, especially if there are concrete classes inheriting 
from the cyclic dependency [21, pg. 224]. This is exactly the case here, since the intention is to abstract 

away the differences between different file formats. 
A solution is to escalate the commonality between the two classes. This has the advantage that the 

dependencies are made acyclic, the downside is that an additional class that has no physical counterpart 

is introduced for purely "software design" reasons. We will call this class MatrixBase, which is the direct 

ancestor of both the Matrix and MatrixFile classes. This second design in shown in Fig. 4.7. 
Now we can derive various matrix file formats from the MatrixFile class, independent of the internal 

computer representation of the Matrix class. We will show later that the benefits compound when considering 

matrix to graph and graph to matrix conversions. 

4.4.2. Navigating Layers of Abstraction. It is important to understand that abstractions involved 

around the construct we call a "matrix" come from different levels and have different purposes. To define 
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a class Matrix and possibly many subclasses, care must be taken to capture the abstraction correctly. It is 

hard to give a formula for designing a set of classes to implement an abstract concept. However, when the 

abstraction is captured just right, using it in the code is natural and intuitive. Often we have found that 

good designs open new possibilities that we had not considered. 

For the matrix object, we have identified at least two dimensions of abstraction that are essentially 

independent, one from the mathematical point of view, one from computer science. Along the first dimension, 

the mathematical one, a matrix can be sparse, dense, banded, triangular, symmetric, rectangular, real or 

complex, rank-deficient or full-rank, etc. From a mathematical point of view, all of these words describe 

properties of the matrix. 

From a computer science point of view, there are different ways that these two-dimensional constructs 

are mapped out into computer memory, which is essentially one-dimensional. Primarily, matrix elements 

must be listed in either row-major or column-major order, though diagonal storage schemes have been used. 

For sparse matrices, indices can start counting from zero or one. Layout is further complicated by blocking, 

graph compression, etc. 

The critical question is: in all the specifications of matrix listed above, which are specializations of a 

matrix and which are attributes? The answer to this question determines which concepts are implemented 

by subclassing and which are implemented as fields inside the class. 

The answer also depends on how the class(es) will be used. Rarely will a programmer find a need to 

implement separate classes for full-rank and rank-deficient matrices, but it is not obvious that a programmer 

must implement sparse and dense matrices as separate classes either. Matlab uses the same structure for 

sparse and dense matrices and allows conversion between the two. On the other hand, PETSc has both 

sparse and dense matrices subclassed from their abstract Mat base class. 

A third dimension of complexity comes from matrix file formats, which can be either a text or binary 

file, and more generally, a pipe, socket connection, or other forms of I/O streams. 

4.4.3. Final Layout. Our major concern was to have a flexible extensible system for getting matrices 

in many different formats into our program at runtime. We discuss in this section how we finally organized 

our solution. The inheritance hierarchy of the subsystem is shown in Fig. 4.8. 

First we made non-abstract base classes GraphBase and MatrixBase which define a general layout for the 

data. From these, we derive Graph and Matrix classes that provide the public accessor/mutator functions; 

each class provides constructors from both GraphBase and MatrixBase. Furthermore, Graph and Matrix 

classes also inherit from the DataStructure class, which gives them generic data structure state, error 

reporting functionality, etc. In this way both can construct from each other without any cyclic dependency. 

The final important piece before fitting together the entire puzzle is a DataStream class. This abstract 

base class has no ancestors. It does all of its I/O using the C style FILE pointers. We chose this C-style of 

I/O because, although it lacks the type-safety of C++ style iostream, it does allow us to do I/O through 

files, pipes, and sockets. This functionality is (unfortunately) not part of the standard C++ library. 

If we try to open a file with a ".gz" suffix, the file object inherits from the DataStream class the 

functionality to open a FILE pointer that is in fact a pipe to the output of gunzip4. The DataStream class 

is therefore responsible for opening and closing the file, uncompressing if necessary, opening or closing the 

pipe or the socket, etc.; but it is an abstract class because it does not know what to do with the FILE once 

it is initialized. This class also provides the error handling services that are typical of file I/O. 

4The ".gz" suffix indicates a file that is compressed with the GNU zip utility (gzip) and can be uncompressed by its 

complement, gunzip. 
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DataStream 
FILE * fp; 
open( const char * command, const char * mode); 
virtual read(FILE *fp)=0; 
virtual v>rite( FILE *fp)=0; 

[ Object  ) 

DataStructure 

Ci 
(l 

MatrixBase 
int nrows; 
int ncols; 
double * data 
int * col_ptr; 
int * row idx; 

MatrixMarketFormat 

MatlabFormat 

HarwellBoeingFormat 
HarweIIBoeingFormat( GraphBase& gb); 
HarweIIBoeingFormat( MatrixBase& mb); 
virtual read( FILE * fp); 
virtual write( FILE * fp); 

Matrix 
Matrix( GraphBase& gb); 
Matrix( MatrixBase& mb): 

GraphBase 
int nvtxs; 
int * vtxweight; 
int * edgeweight; 
int * adj_head; 
int * adj_list; 

UserDefinedFormat 

ChacoFormat 
ChacoFormat( GraphBase& gb); 
ChacoFormat( MatrixBase& mb); 
virtual read( FILE * fp); 
virtual write( FILE * fp); ; 

Graph 
Graph( GraphBase& gb); 
Graph( MatrixBase& mb); 

FIG. 4.8. A fragment of the inheritance hierarchy highlighting how multiple file formats are implemented and extended. To 

add an additional format, create a class that inherits from DataStream and one of GraphBase or MatrixBase. Then implement 

the two pure virtual methods inherited from DataStream. 

To understand how all these partial classes come together to do I/O for a sparse matrix format, consider 

adding a new format to the library, a Matrix-Market file. To be able to read this format, we create a class 

MatrixMarketFile that inherits from MatrixBase and DataStream. This new class needs to implement two 

constructors based on MatrixBase or GraphBase and two virtual functions: read( FILE * ) and write ( 

FILE * ) (in practice, it also implements many more accessor/modifier methods specific to the Matrix- 

Market format). Now we can read a Matrix-Market file, and create instances of either Graph or Matrix (or 

any other class that uses a MatrixBase in its constructor). Furthermore, from any class that inherits from 

MatrixBase or GraphBase we can write the object in Matrix-Market format. A graph-based file format, for 

instance Chaco [18], can be created using a similar inheritance hierarchy based on GraphBase. 

5. Ordering Specifics. SjJMöfe is a C++ library of sparse matrix ordering algorithms for reducing 

bandwidth, envelope, wavefront, or fill. We had earlier developed new envelope and wavefront reducing 

algorithms [19], but since they were implemented in C, we faced problems with complexity, scaling, and 

extensibility of the code.   This motivated us to create Spinöfe.   Although Spinöfe has several stand-alone 
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node reachable set degree 

1 67 2 

2 6 1 

3 N/A 

4 7 1 

5 6 9 13 12 4 

6 1 2 5 7 9 11 12 13 8 

7 1 46 9 11 13 6 

8 N/A 

9 5 6 7 11 12 13 6 

10 N/A 

11 6 79 13 4 

12 5 6 9 13 4 

13 5 6 7 9 11 12 14 15 16 9 

14 13 1 

15 13 1 

16 13 1 

FIG. 5.1. An example of a quotient graph. The nodes are represented as circles, and enodes as boxes. The reachable set 
of a node v is the union of the set of nodes adjacent to v, and the set of all nodes adjacent to enodes adjacent to v. The degree 
of a node in a quotient graph is the size of its reachable set, and not the cardinality of its adjacency set, as is usual in graphs. 

drivers, it is intended to be used as a library, and is distributed with C, C++, Matlab, and PETSc calling 

interfaces5. 
In this section, we provide some examples of major concrete classes in Spinöle, one from the DataStructure 

and one from the Algorithm branches of the inheritance hierarchy. In Sect. 5.1 we introduce the QuotientGraph 

class and describe its use. It will be revisited again in Sect. 9.2 when we discuss lessons learned. We also 

discuss the framework for implementing a family of algorithms in Sect. 5.2.  We believe that this section 
provides a compelling example for how flexibility and extensibility can be achieved by proper design. 

5.1. The Quotient Graph. A quotient graph [14] is an implicit representation of the sequence of 

elimination graphs obtained during the factorization process. The quotient graph represents (implicitly) the 

elimination graph at any stage in the same amount of space as the original graph, even though the ordering 

algorithm creates new fill edges in the elimination graph. Thus the quotient graph is immune to the effects of 
fill; the price to be paid for this property is greater searching costs to determine from the quotient graph the 

adjacency set of a node in the elimination graph. The space efficiency helps avoid dynamic storage allocation 

for the ordering step, since the total fill is known only at the end of this step. 

The quotient graph is an augmented graph with two distinct types of vertices: nodes and enodes. Nodes 

represent uneliminated nodes from the original graph, suitably grouped together; enodes represent groups 

of eliminated nodes that are adjacent to each other. The edges in a quotient graph join either one node to 

another, or a node to an enode. There are no edges connecting two enodes6. 

The set of nodes adjacent to a node v in an elimination graph can be computed from the quotient graph 

by computing the nodes that can be reached from v in the latter graph. This reachable set of v includes 

two groups of nodes: First, the set of all nodes adjacent to v in the quotient graph; second, the union of the 

'Fortran interfaces are also possible, but have not been implemented yet. 
6Conceptually, an edge could connect two enodes in some intermediate state, but it would immediately be removed and the 

enodes would be merged into one. 
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PriorityStrategy 

prioritize(  )=0 

ZX\ 
ApproxMinimumDegrec 

prioritize( ); 

UserDefined 

prioritize( ); 

FIG. 5.2. The Strategy Pattern. 

nodes that are adjacent to the enodes adjacent to v. The union of these two sets is the reachable set of v 

in the quotient graph, and hence the adjacency set of v in the elimination graph. Fig. 5.1 shows a sample 

quotient graph and the reachable sets and degrees for each node. 

5.2. Polymorphic Fill Reducing Orderings. One example where object-oriented implementation 

had substantial payoffs in terms of extensibility was in our ability to construct polymorphic fill reducing 

orderings. Recall from Table 2.1 that there are several different variants of these algorithms, many of which 
are quite recent. Currently there is no known library containing all of these algorithms, besides Spindle. 

While some of these heuristics are related, others—particularly MMD and AMD—are radically different 

in the ways priorities are computed, the underlying graph is updated, and in the allowed and disallowed 

optimizations. A fundamental distinction is that MMD allows multiple elimination, while AMD is restricted 

to single elimination. This means that MMD allows many vertices to be eliminated between each graph 

update (but the eliminated nodes have to belong to non-adjacent supernodes). AMD does not require as 

much work per graph update, but the graph needs to be updated after every node is eliminated; this is a 

consequence of the way in which priorities are approximated in AMD. 
Polymorphism was achieved using the Strategy Pattern [13, pg. 315]. We created a complete framework 

for the entire family of minimum-degree like algorithms but deferred the ability to compute the (exact or 

approximate) degree of a node to a separate class in its own mini hierarchy. See Fig. 5.2 for the basic layout. 

In this arrangement, the class MinimumPriorityEngine (which we will call Engine for short) is an 

algorithm that repeatedly selects a node of minimum priority from the given graph, eliminates it from the 

graph, and then updates the graph by adding appropriate fill edges when necessary. The catch is that it has 

no idea how to determine the priority of the vertices. It must rely on a PriorityStrategy class (Strategy 

for short), or more specifically, a specialized descendant of the Strategy. 
This important design pattern offers several benefits. It provides a more efficient and more extensible 

alternative to long chains of conditional statements for selecting desired behavior. It allows new strategies 
to be implemented without changing the implementation of the engine. It is also more attractive than 

overriding a member function of the engine class directly because of the engine's overall complexity. This 

design also forces a separation between the work that is done and how the quality of work is measured. 

There are potential drawbacks for using this pattern in general. The first drawback is that there is an 

increased number of classes in the library, one for each ordering algorithm. This is not a major concern, 

though users should be insulated from this by reasonable defaults being provided. A second drawback is the 
communication overhead. The calling interface must be identical for all the strategies, though individual 

types may not need all the information provided. A third drawback is the potential algorithmic overhead 

in decoupling engine and strategy. In our case, the engine could query the strategy once for each vertex 

that needs to be evaluated, though the virtual-function call overhead would become high. Alternatively, the 
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MinPriorityEngine 

done = isAllEliminated() 

QuotientSraph  BucketSorter   MinPriorityStrategy 

i 
SINGLE or MULTIPLE ELIMINATION 

updatc( &recomputeNodes, AmergedNodet 6 
remove{ mergedNodes ) 

prioritize( recomputeNodes ) 

*o 

Cr 

T 

adjbeginf vtx ) 
adj_end( vtx ) 

nscrt( vtx , priority; 

r 
FIG. 5.3. Interaction of the classes in the ordering step. 

engine might request all unelirninated nodes in the current quotient graph to be re-prioritized after each 

node is eliminated. This may result in too much work being done inside the strategy. Fortunately, in all 

these algorithms the only nodes whose priorities change are the ones adjacent to the most recently eliminated 

node. The QuotientGraph keeps track of this information. 

For the Engine to work, a class must be derived from the Strategy abstract base class, and this class 

must override the pure virtual member function computePr iority. The Engine is responsible for maintaining 

the graph and a priority queue of vertices. It selects a vertex of minimum priority, removes it from the queue, 

and eliminates it from the graph. The priority of all the neighbors of the most recently eliminated node is 

changed, so they too are removed from the priority queue for the time being. When there is no longer any 

vertex in the priority queue with the same priority as the first vertex eliminated at this stage, a maximal 

independent set of minimum priority nodes have been eliminated. The Engine updates the graph and gives a 

list of all vertices adjacent to newly eliminated ones to the MMDStrategy class. This class, in turn, computes 

the new priorities of these vertices and inserts them into the priority queue. 

To make this setup efficient, we use a BucketSorter class to implement the priority queue and a 

QuotientGraph class to implement the series of graphs during elimination. The interaction of these four 

major objects is shown in Fig. 5.3. We hide the details of how single elimination and multiple elimination 

are handled. This too is determined by a simple query to the Strategy class. When the QuotientGraph 

is updated, it performs various types of compressions which may remove additional vertices or modify the 

list of vertices that need their priority recomputed. When it calls the Strategy to compute the priorities, 

it provides a const reference to the QuotientGraph for it to explore the datastructure without fear of 

side-effects, and the BucketSorter to insert the vertices in. 

To implement all of the ordering algorithms in Table 2.1 efficiently, we had to augment the Strategy 

Pattern. The QuotientGraph is required to behave in slightly different ways when updating for single 

elimination algorithms (e.g., AMD) and multiple elimination algorithms (e.g., MMD). Thus the Engine 

must query the Strategy what type is required and set the QuotientGraph to behave accordingly. This is 

handled in the first phase of the run() function that is overridden from its parent Algorithm class. 

6. Factorization Specifics. 061(0 currently focuses on the factorization and triangular solve steps, 

and imports orderings from other libraries such as Spmöfe. Here we restrict our discussion to the factoriza- 
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tion algorithms, which are the most complex.  All abstractions associated with the factorization are built 

incrementally, beginning from the base classes described in Sect. 4. 

6.1. The First Structural and Algorithmic Classes. The initial abstractions result naturally from 

the high level formulation of the factorization, illustrated in Fig. 2.1. We need to describe coefficient matrix 

objects, permutation objects and factor objects, and for these 06U0 provides the following three classes: 

SparseSymmMatrix, Permutation, and SparseLwTrMatrix. 

A coefficient matrix is described by the SparseSymmMatrix class. Internally, the matrix data is stored 

using the compressed column format: for each column there is a set of numerical values and a set of row 

indices that correspond to these values. In addition, an index array contains the location of the first element 

in each column in the value and row index arrays. The Permutation class describes permutations by storing 

two maps: a map from old to new indices and another from new to old indices. The SparseLwTrMatrix 

class describes both the triangular and diagonal factors. While this abstraction may look awkward, it is 

done with a specific intent. Note that the diagonal elements of L do not have to be stored explicitly, which 

allows the elements of D to replace them. Since the factors are usually manipulated together, this unified 

implementation is more efficient. The storage of the data is similar to the one used in the SparseSymmMatrix 

class, with the difference that row indices are compressed according to the supernodal structure of the factors. 

06U0 provides a separate abstraction for each factorization algorithm. Currently, it supports only multi- 

frontal factorizations, for both symmetric positive definite and indefinite problems. In the indefinite case we 

make use of the Duff-Reid [11] pivoting strategy now, but we plan to extend the library with other strate- 

gies too, for example Aschcraft-Grimes-Lewis [2]. Pivoting strategies are discussed in detail in the latter 

paper. Also, the library can be easily extended with other factorization algorithms, such as the left-looking 

algorithm. The current factorization classes are PosDef MultFrtFactor, and Indef MultFrtFactor. 

6.2. Connecting Data Structures and Algorithms. Data structures are inputs to and outputs 

for algorithms. We associate data structures with algorithms by using pointers to structural objects inside 

algorithmic classes. The inputs to a factorization algorithm are the coefficient matrix and the sparsity 

preserving permutation. The outputs are the factors and the permutation that provides stability. We make 

the choice of composing the two permutations, so the output permutation replaces the input permutation 

after the factorization algorithm is run. Fig. 6.1 describes the connection between a factorization algorithm 

and its input and output data structures. 

Inputs and outputs can be associated with an algorithm through the constructor of the algorithm class, 

or at a later stage (not shown in Fig. 6.1). This provides the flexibility to change them at any time. 

6.3. The Factorization in More Depth. More abstractions are needed deeper inside the factoriza- 

tion algorithms. First, there is the elimination forest, which guides both the symbolic and the numerical 

phases of the factorization. The forest stores parent, child and sibling pointers for every node. This way 

it can be traversed both bottom-up and top-down. The symbolic and numerical factorization proceed 

bottom-up (postorder) but require child and sibling information. The parent, child and sibling pointers 

are stored for both nodal and supernodal versions of the forest. There are also three major algorithms 

inside the factorization: algorithms to compute the elimination forest, the symbolic factorization, and the 

numerical factorization. Positive definite and indefinite solvers differ only in the numerical part, so separate 

numerical factorization abstractions are needed. Thus we have the classes: ElimForest, CompElimForest, 

PosDefMultFrtNumFactor, IndefMultFrtNumFactor and SymFactor. 

A factorization class is based on these new classes. To define it we use composition, as shown in Fig. 6.2. 
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class PosDefMultFrtFactor:  public Algorithm 

{ 
private: 

const class SparseSymmMatrix *a; 

class Permutation *p; 

class SparseLwTrMatrix *1; 

// ... 

public: 

PosDefMultFrtFactor(const class SparseSymmMatrix, 

class Permutation, 

class SparseLwTrMatrix); 

// 

Vi 
FIG. 6.1. An algorithm connects to its inputs and outputs by means of pointers to the corresponding data structures. 

class PosDefMultFrtFactor:  public Algorithm 

{ 
private: 

// ... 
ElimForest f; 

CompElimForest elm; 

SymFactor sym; 

PosDefMultFrtNumFactor num; 

public: 

// ... 

Vii 
FIG. 6.2. Composition within a multifrontal factorization algorithm. 

By splitting the factorization algorithm into its three algorithmic components, we give the user the 

possibility of running these components individually. This flexibility is needed in many situations. When 

some types of nonlinear equations are solved by successive linearization, the zero-nonzero structures remain 

constant while the numerical values change from one iteration to the next. In this case, only the numerical 

factorization algorithm needs to be run at each iteration. This splitting also aids code reuse since the 

algorithms for computing the elimination forest and the symbolic factorization are implemented only once 

but are used by both positive definite and indefinite factorizations. 

Three more abstractions are required within the numerical factorization. They correspond to the frontal 

and update matrices and to the update stack. Since both frontal and update matrices are dense we first 

provide a general abstraction for dense matrices. In addition to the numerical values, frontal and update 

matrices must also store two types of maps: the map from local to global indices and vice versa. The 

corresponding classes are DenseSymmMatrix, FrontalMatrix, UpdateMatrix, and UpdateStack. 

Composition is used again within the numerical factorization algorithms, as shown in Fig. 6.3. Also, the 

update stack is composed of update matrices. 

Figs. 6.4 and 6.5 summarize our discussion above. They provide a high level description of the 061(0 classes 

associated with the factorization from two perspectives, showing inheritance and composition relationships. 
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class PosDefMultFrtNumFactor:  public Algorithm 

{ 
private: 

// ... 

FrontalBatrix fm; 

UpdateMatrix urn; 

UpdateStack u; 

public: 

// 

}; 

FIG. 6.3. Composition within a multifrontal numerical factorization algorithm. 

T 
[ DataStructure 1 

[SparseSymmMatrix) [Permutation] 
1 

[ SparseLwTrMatrix ) 

[ElimForest) [DenseSymmMatrix]       (UpdateStackJ 

I 
[FrontalMatrix]        [UpdateMatrix] 

[CompElimForest ] 

[Algorithm) 

[SymFactor) 

[PosPefMultFrtNumFactor ] [IndefMultFrtNumFactör) 

[PosDefMultFrtFactor]       [IndefMultFrtFactor] 

FIG. 6.4. Inheritance relationships. 

[ElimForest) 

[PosDefMultFrtFactor) 

[CompElimForest) 

[PosPefMultFrtNumFactor ) 

7 r l 
[FrontalMatrix] [UpdateMatrixMUpdateStack) 

1_1—1- 
[SymFactor) [IndefMultFrtNumFactör) 

ill 
[IndefMultFrtFactor) 

FIG. 6.5. Composition relationships. 
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6.4. The Interaction between Data Structures and Algorithms. Because of the conflict be- 

tween high level abstractions and efficiency, the interaction between data structures and algorithms is a 

major concern in 061(0. We have made several tradeoffs here rather than adopt a uniform solution in all 

such situations. There are cases when efficient interfaces make algorithmic classes aware of the internal 

representation of structural classes. In other situations we were able to achieve more abstraction. The code 

in Fig. 6.6, which is the kernel of a numerical factorization algorithm, is representative from this perspective. 

The loop traverses the supernodal elimination forest in postorder using iterators. For each supernode the 

frontal matrix assembles original numerical values from the coefficient matrix; for a non-leaf supernode, 

update matrices from the update stack are also assembled into the frontal matrix. Partial factorization is 

then performed on the frontal matrix, eliminated columns are saved in the factors, and the update matrix 

is pushed onto the stack. 

Note that most of the execution time is spent inside the partial factorization of the frontal matrices. 

Accordingly, we had to make sure that this operation is performed efficiently. The factorization is a triply 

nested loop which needs to be carefully written. To make sure that we get the best performance, we have 

written it in Fortran77 in addition to C++, since Fortran77 compilers tend to generate more efficient code 

than C++ compilers. 

In terms of efficiency, note also that we perform storage allocation for the update matrices only once. 

We actually allocate a big chunk of memory for the update stack and the update matrices use that storage. 

Of course, in the indefinite case we have to increase the size of the stack when needed. 

7. Results. We report results obtained on a Sun Ultra I (167 MHz) workstation with 128 MB of main 

memory and 512 KB of cache, running Solaris 2.5. We compiled the C++ source files with g++ 2.8.1 (-0) 

and the Fortran77 source files with f77 4.2 (-fast). 

We use the two sets of problems listed in Table 7.1. We read only the sparsity pattern for the first set 

and generate numerical values for the nonzero elements (both real and complex) that make the coefficient 

matrices positive definite. The problems in the second set are indefinite and we read the original numerical 

values also. To compare ordering algorithms we use the first set of problems. Table 7.2 shows ordering and 

numerical factorization times for several ordering algorithms available in Spindfe, for real-valued coefficient 

matrices. 

We focus next on one particular ordering, MMD, and look at several other properties. Table 7.3 lists, for 

the first set of problems, the number of off-diagonal nonzero entries in the factors, the numerical factorization 

performance and the backward error for both real and complex-valued problems. 

We focus next on one particular ordering, MMD, and look at several other properties. Table 7.3 lists, for 

the first set of problems, the number of off-diagonal nonzero entries in the factors, the numerical factorization 

performance and the backward error for both real and complex-valued problems. Note that performance 

results must be interpreted with care for sparse matrix computations, since an ordering that increases 

arithmetic work tends to increase performance as well. Thus one can achieve a higher performance by 

not preordering the coefficient matrix by a fill-reducing ordering. Performance reports are useful when the 

same ordering is used on different architectures, or as in this case, when looking at both real and complex 

valued problems. Note that while the arithmetic work of complex-valued problems is roughly four times 

the work in real-valued problems, performance improves only by a factor of two. The relative residual 

(||(6 - AE)||/(||.A|| ||X||)) is computed to report backward error. 

We switch now to the second set of problems. The first two groups contain real-valued structural 

analysis and computational fluid dynamics (Stokes) problems. The third group contains Helmholtz problems, 
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for (ElimForest::constSupPostIter it = f->supPostBegin(); 

it != f->supPostEnd(); it++) 

{ 
fm.init(*l, u, *it); // Initialize the frontal matrix. 

fm.clearO; // Zero out all its values. 

fm.assembleOrg(*a, *p); // Assemble original values. 

for (int childCnt = it.getSupChildCnt(); 

childCnt > 0; childCnt—) 

{ 
u.pop(um); // Pop the update matrix out of the stack. 

fm.assembleUpd(um); // Assemble update values. 

} 

fm.factorO; // Perform partial factorization. 

fm.saveElm(*l); // Save eliminated values. 

um.init(fm, u, *it); // Initialize the update matrix. 

fm.saveUpd(um); // Save update values. 

V» 
u.push(um); // Push the update matrix into the stack. 

FIG. 6.6.  The core of the multifrontal numerical factorization. 

which are complex-valued. We order the coefficient matrices with MMD. Table 7.4 reports the number 

of off-diagonal nonzero entries in the factors, numerical factorization time, performance during numerical 

factorization, and the relative residual. Performance is still meaningful because we are interested in how it 

changes for problems within the same category. It is expected to increase with increasing number of nonzeros 
in the factor, and that is what we see for structures and the Stokes problem. Yet, performance decreases 

with increasing size for the Helmholtz problems. This is likely caused by increased paging due to the larger 
storage requirements of these problems relative to the available memory. We have observed a performance 

increase with size for these problems on machines with more memory (such as a Sun Ultra 60 workstation 
with 512 MB of memory and an IBM RS6000 workstation with 256 MB of memory). These results show 

that for large problems an out-of-core solver is needed to obtain high performance. 

There is a detail that needs to be explained here. The indefinite numerical factorization is based on a 

sparsity/stability threshold which can take values between 0 and 1. A large threshold enhances stability but 
also generates more swapping among the columns within each supernode, and more delaying of columns from 

child to parent supernodes, which leads to reduced sparsity and performance. Sparsity can be preserved and 

performance increased by lowering the threshold, but that decreases stability. The optimal choice depends 

on the problem and on what tradeoffs are made. Stability can usually be reinstated from an unstable 

factorization by few steps of iterative refinement. The results in Table 7.4 are obtained with a threshold 

value of 0.1, and no iterative refinement. 
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TABLE 7.1 

Test problems. 

problem 
order nonzeros in A 

(subdiag.) 
description 

commanche 7,920 11,880 helicopter mesh 

barth4 6,019 17,473 computational fluid dynamics 

fordl 18,728 41,424 structural analysis 

barth5 15,606 45,878 computational fluid dynamics 

shuttle-eddy 10,429 46,585 model of space shuttle 

ford2 100,196 222,246 structural analysis 

tandem.vtx 18,454 117,448 helicopter mesh (tetrahedal) 

pdslO 16,558 66,550 multicommodity flow 

copterl 17,222 96,921 helicopter mesh 

kenl3 28,632 66,586 multicommodity flow 

tandem.dual 94,069 183,212 dual of helicopter mesh 

onera.dual 85,567 166,817 dual of ONERA-M6 wing mesh 

copter2 55,476 352,238 helicopter mesh 

shell 4,815 100,631 model of venous stent 

rev7a 9,176 143,586 )j 

nok 13,098 806,829 )> 
e20r0000 4,241 64,185 Driven cavity (Stokes flow) 

e30r0000 9,661 149,416 )> 
e40r0000 17,281 270,367 )i 

helmholtzO 4,224 19,840 Helmholtz problem (acoustics) 

helmholtzl 16,640 74,752 j) 

helmholtz2 66,048 283,648 )j 

8. Comparisons with Existing Work. While we were completing this article,' we learned about 

another object-oriented library called SPOOLES that contains direct solvers. SPOOLES (SParse Object- 
oriented Linear Equations Solver) is a recent package developed by Cleve Ashcraft and colleagues at the 

Boeing Company [30]. The code is publicly available without any licensing restrictions. 

SPOOLES contains solvers for symmetric and unsymmetric systems of equations, and for least squares 
problems. It supports pivoting for numerical stability; it has three ordering algorithms (minimum degree, 

nested dissection, and multisection). Implementations on serial, shared parallel (threads), and distributed 

memory parallel (message-passing using MPI) environments are included. It is a robust, well documented 

package that is written in C using object-oriented techniques. We have learned much from its design and 

from our continuing interactions with Cleve Ashcraft. 

SPOOLES distinguishes between data classes, which can have some trivial functionality, and algorithm 

classes, which handle the more sophisticated functionality. However, it does not enforce this paradigm 

strictly, as it has ordering classes but only factorization and solve methods. 

SPOOLES employs a left-looking factorization algorithm instead of the multifrontal algorithm that we 

have implemented. However, with the functionality provided in SPOOLES, a multifrontal method can be 
quickly implemented. It employs a one-dimensional mapping of the matrix onto processors during parallel 
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TABLE 7.2 

Time (seconds) needed to compute some fill-reducing orderings from the MMD family (o), and to factor the reordered 

matrices (f), for positive definite real-valued problems. 

problem MMD MMMD AMD AMIND AMMF 

commanche 
o 

f 

0.28 

0.24 

0.33 

0.22 

0.55 

0.25 

0.55 

0.23 

0.58 

0.26 

barth4 
0 

f 

0.23 

0.27 

0.25 

0.28 

0.33 

0.28 

0.33 

0.28 

0.35 

0.27 

fordl 
0 

f 

0.89 

0.89 

1.07 

0.84 

1.31 

0.91 

1.38 

0.95 

1.44 

0.95 

ken 13 
0 

f 

2.26 

1.61 

2.72 

1.79 

6.01 

1.61 

7.44 

1.86 

7.32 

1.85 

barth5 
0 

f 

0.93 

0.93 

1.06 

0.83 

1.17 

0.94 

1.21 

0.88 

1.27 

0.88 

shuttle_eddy 
0 

f 

0.44 

0.98 

0.51 

0.87 

0.62 

0.98 

0.66 

0.87 

0.65 

0.87 

ford2 
0 

f 

6.67 

12.19 

7.86 

9.01 

8.05 

11.41 

8.78 

9.15 

8.81 

8.57 

tandem.vtx 
0 

f 

2.25 

31.64 

2.45 

20.95 

1.82 

30.02 

2.11 

19.05 

2.17 

16.34 

pdslO 
o 

f 

89.52 

41.60 

103.74 

41.50 

3.88 

40.86 

4.46 

39.66 

4.43 

42.51 

copterl 
0 

f 

2.50 

42.15 

2.62 

34.98 

2.01 

39.50 

2.38 

31.81 

2.80 

31.18 

tandem.dual 
0 

f 

11.34 

256.46 

12.32 

205.72 

9.84 

224.28 

11.26 

146.66 

11.15 

121.28 

onera-dual 
0 

f 

10.78 

344.38 

11.70 

214.66 

8.98 

261.60 

10.35 

191.71 

10.55 

136.83 

copter2 
0 

f 

11.74 

413.02 

12.27 

259.38 

7.85 

364.55 

9.32 

234.47 

9.45 

218.37 

factorization, and a two-dimensional (2-D) mapping during the parallel triangular solves. It would be harder 

to support pivoting with a mapping of the matrix. The factorization algorithms are not as scalable as parallel 

algorithms that employ the 2-D mapping. 

SPOOLES covers more ground than we have done, as it has solvers for symmetric and unsymmetric 

systems of equations, as well as over-determined systems. It does not have all of the minimum priority 

orderings in Spindle. 

SPOOLES is implemented in C, which is generally more portable than C++. The C programming 

language is a procedural language and not designed to support object-oriented semantics of inheritance, 

automatic construction and destruction of objects, polymorphism, template containers, etc. These can be 

emulated in C, but it falls upon the library developer and the user to adhere to certain programming styles 

with no help or enforcement from the compiler. 
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TABLE 7.3 

Factorization results obtained with the positive definite code. 

nonzeros in L real-valued complex -valued 

problem (subdiagonal) perf. 

(Mfl/s) 

error perf. 

(Mfl/s) 

error 

commanche 70,308 12.1 6e-17 37.0 le-16 

barth4 110,054 21.6 4e-17 58.3 8e-17 

fordl 313,855 28.6 2e-17 72.6 3e-17 

barth5 364,751 28.8 5e-17 75.2 le-16 

shuttle_eddy 390,020 37.2 4e-17 89.6 7e-17 

ford2 2,463,669 32.2 2e-17 75.5 2e-17 

tandem_vtx 2,708,953 36.2 9e-17 69.3 le-16 

pdslO 1,634,148 27.2 2e-17 53.0 3e-17 

copter1 2,470,144 32.0 2e-16 69.8 2e-16 

ken 13 334,470 16.3 le-17 42.0 6e-18 

tandem-dual 11,796,630 34.5 le-16 69.9 2e-16 

onera.dual 12,028,652 34.7 le-16 69.5 2e-16 

copter2 14,977,651 33.8 7e-17 67.1 le-16 

TABLE 7.4 

Factorization results obtained with the indefinite code. 

problem 
nonzeros in L time perf. error 

(subdiagonal) (s) (Mfl/s) 

shell 139,643 0.33 19.7 le-17 

rev7a 580,599 2.95 26.7 7e-17 

nok 2,346,692 17.74 34.5 le-19 

e20r0000 369,843 2.47 22.1 2e-18 

e30r0000 1,133,759 10.30 24.0 le-18 

e40r0000 2,451,480 27.11 27.3 le-18 

helmholtzO 129,525 0.56 66.3 3e-17 

helmholtzl 619,292 4.64 58.5 4e-17 

helmholtz2 3,106,177 39.45 66.9 5e-17 

9. Lessons Learned. 

9.1. General Comments. It is difficult to create general solutions to software design problems. Often 

a solution that seems good in a particular context becomes unsatisfactory when the context is extended. 

For example, the initial design of 06U0 did not decouple algorithms from data structures. It was initially 

implemented in C instead of C++. When 06U0 was ported to C++, the structs were converted to classes and 
algorithms were made methods of these classes. This introduced several difficulties. First, the association 

was not natural. Is an ordering algorithm supposed to be associated with a matrix or with a permutation? 

Second, this solution was neither flexible nor extensible. These problems led us later to the natural and 

general solution in which we introduced algorithmic classes. 

One area where we continue to struggle for the "right" solution is with shared objects. This happens, for 
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example, with an ordering algorithm and a coefficient matrix since the matrix exists outside the algorithm 

but it also has a copy inside the algorithm, as the algorithm's input. Since the matrix is built before the 

ordering algorithm is run, the input may just be a pointer to the matrix, an external object. What happens 

with the output of the ordering algorithm (the Permutation object) is trickier to manage. 

Currently, we have a limited approach for the ownership of dynamically allocated data inside structural 

objects. It is not desirable to allocate separate copies for different copies of the same entity. We have used 

two approaches until now. In the first, the output object also exists before the algorithm is run (it can 

be empty) and the algorithm packs the empty class with information. The second approach lets algorithm 

classes construct the output classes internally and spawn ownership (and cleanup responsibilities) of only 

the outputs that the user requests. 

The preallocation scheme is simple and makes responsibility of instance reclamation obvious. The 

downside of this is that an algorithm's output has to be allocated and assigned to it before the algorithm is 

run. It is less intuitive than running the algorithm and querying the results. Spmöfe's fill-reducing orderings 

construct the parent pointers for the elimination forest in the normal course of computing the ordering. One 

user may indeed want a permutation, but others may want the elimination forest. It is inelegant to force 

users to pre-initialize output classes that they are not even interested in. 

The approach of having shared objects and explicitly transferring ownership can be complicated to use 

and is more prone to programmer error. This is, however, much easier to implement than another method 

for sharing large data structures: reference counting. 

Full reference counting requires an interface class for each class that can be shared. An additional layer 

is needed to provide a counter that counts the number of interfaces that access the current instance. This 

gives more flexibility in assigning inputs and outputs (outputs can actually be built before or later). Changes 

are then seen by all interfaces and memory deallocation occurs correctly when the last interface is destroyed. 

The problem of unwanted changes by another interface is eliminated by performing "deep-copy" on write. 

9.2. Judicious Application of Iterators. One disappointing endeavor was to provide an iterator class 

to traverse the reachable set of the QuotientGraph class. The idea was to provide an adjacency iterator for an 

EliminationGraph class, a reachable set iterator for the QuotientGraph class, and a collection of minimum 

priority algorithms that were totally unaware of whether it was operating on an elimination graph or a 

quotient graph. Although we were successful in implementing the ReachableSetlter class, its performance 

was so poor, that its general use was abandoned. This required the minimum priority algorithms to be 

specific to the QuotientGraph class and iterate directly over the enode and supernode adjacency lists. This 

increased the complexity of the interface and the coupling between data-structure and algorithm, but also 

significantly improved the performance. Here we explain why this idea looked good on paper, why it did not 

work well in practice, and why this problem is unavoidable. 

Ideally, one would like to provide a class that iterates over the reachable set so that the priority com- 

putation can be implemented cleanly. In Fig. 9.1 this class is typedef ed inside the QuotientGraph class as 

reach_iterator. We add the additional detail that a weight might be associated with each supernode, so 

the degree computation sums the weights of the nodes in the reachable set. 

Internally, we expected the reachable set iterator to have much in common with the C++ standard 

deque:: iterator. A deque is a doubly ended queue that is commonly implemented as a vector of pointers 

to pages of items. The deque can easily add or remove items from each end by checking the first or last 

pages, and adding or deleting pages as necessary. The iterator of a deque need only advance to the end of 

a page, then jump to the next page. In the context of a quotient graph, an enode is much like a page with 
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void MinimumDegree::prioritize( const QGraphft g, Listft 1,   > 

PriorityQueueft pq ) 

{ 
for( List: :iterator it = 1.begin(); it != I.endO; ++it ) { 

int i = *it; 

int degree = 0; 

for( QGraph::reach_iterator j = g.reach_begin(i); 

j != g.reach.end(i); ++j ) { 

degree += g.getNodeWeight( *j ) 

} 
pq.insert( degree, i ); 

} 
} 

FIG. 9.1. Computing the degree of all the nodes in List the elegant (but inefficient) way using reachable set iterators. The 

innocuous looking ++it hides a cascade of if-then-else tests that must be performed at each call. 

each having a list of items; namely supernodes. 

There are, unfortunately, some critical differences. In a deque, the size of each page is known a priori, 

which is not true for the supernodes adjacent to an enode. Furthermore, the same supernode may be 

reachable through two different enodes. The reachable set need not be traversed in sorted order (as presented 

in Fig. 5.1), but it cannot allow the same supernode to be counted twice through two different enodes. 

Furthermore, the reachable set does not include the node itself. 

We were able to implement such an iterator, but there is a hidden overhead that causes the code fragment 

in Fig. 9.1 to be too expensive. A reachable set is the union of several non-disjoint sets; and therefore the 

iterator must test at each iteration if there are any more items in the current set, if there are any more sets, 

and use some internal mechanism to prevent double visiting the same node in different sets. 

Most of the details for the ReachableSetlter are not difficult, but the increment operator is excessively 

tedious. The problem is that the increment operator must redetermine its state at each call: Is it already 

at the end of the adjacency list? Are there more nodes or enodes in the current list? Once a next node 

has been located, has it been marked? The alternative is to evaluate the reachable set by iterating over 

sets of adjacent nodes and enodes of the quotient graph manually. This is shown in Figure 9.2 which is 

functionally equivalent to the code in Figure 9.1. In this case, the state information is implicit in the loop 

and not confined to the increment operator, which allows for the entire process to execute more efficiently. 

The lesson learned here is to be judicious in the use of fancy techniques. The coding benefits of using 

a reachable set iterator are far outweighed by the increase in performance in manually running through the 

adjacency lists. The latter scheme makes the critical assumption that every node has a "self-edge" to itself in 

the list of adjacent enodes. This convenient assumption also increases coupling between the QuotientGraph. 

class and the descendants of the MinimumPriorityStrategy class. 

9.3. Conclusions. There is no inherent conflict between object-oriented design and efficient direct 

solvers in scientific computing. Some features of C++ such as function inlining, templates, encapsulation, 

and inheritance suffer no performance penalties and can be used aggressively. Other features such as virtual 

functions, excessive temporary objects that can result from operator overloading, and hidden copy construc- 

tion can significantly degrade performance if left unchecked. The target of object-oriented design must be 
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void MinimumDegree::prioritize( const QGraphfe g, List& 1,   ' 

PriorityQueueft pq ) 

{ 
for( List: :iterator it = l.beginO;   it   != I.endO;   ++it  )   { 

int i = *it; 

int degree = 0; 

int my.stamp = nextStampO ;// get new timestamp 

g.visited[ i ]  = my-stamp;      //Mark myself visited 

for( QGraph::enode_iterator e = g.enode_begin(i); 

e   != g.enode_end(i);  ++e )   { 

int enode = *e;    //for all adjacent enodes 

for( QGraph::node.iterator j  = g.node_begin(e); 

j   != g.enode.end(e);  ++j  )   { 

int adj = * j ;    // for all adjacent nodes 

if  ( visited[ adj ]  < my-stamp )  { 

// if not already visited, mark it and add to degree 

visited[ adj  ]   = my-Stamp; 

degree += g.getNodeWeight(  adj  ); 

} 
} 

} 
pq.insert( degree,  i ); 

} 

FIG. 9.2. Computing degree without using the reachable set iterators. This piece of code is not as elegant as the equivalent 

fragment in Figure 9.1, but in terms of efficiency , this method is the clear winner. In this case, the visited array is part 
of the MinimumPriorityStrategy base class along with the nextStampO member function that always returns a number larger 
than any previous number. If the next stamp is the maximum integer, then the visited array is reinitialized to all zeros. 

the higher layers of the software. With direct solvers they are the most sophisticated, taking most of the 

code, but just a small fraction of the execution time. There is not much room for abstraction in low level 

loops, so the focus there must be on performance. 

We have learned that good design requires tradeoffs. There is no perfect solution, unless we are talking 

about artificial problems typically constructed for pedagogical use. Real-life applications have many con- 
straints, many that conflict with each other, and it is difficult to satisfy all of them. The solution is to 

prioritize the constraints and to satisfy those with high priorities. An example is decoupling, which intro- 
duces an overhead since objects have to communicate through well defined interfaces. By decoupling we can 

localize potential changes in the code, and this is one of the properties that make object-oriented software 

appealing. To avoid overheads, we have weakened the encapsulation in performance-critical parts of the 

code. 
Well-designed object-oriented software that is implemented in C++ leads to libraries that are easier 

to use, more flexible, more extensible, safer, and just as efficient as libraries implemented in C or Fortran. 

Designing and implementing a "good" object-oriented library is also significantly harder. Implementing 

sparse direct solvers cleanly and efficiently using object-oriented techniques is an area where challenging 

research issues remain. 
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